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PREFACE 

Titanium matrix composites reinforced with SIC fibers have been the subject of extensive 
research over the past decade because of interest in advanced aerospace applications that 
require light weight, high stiffness, and high temperature capabilities. Programs such as the 
National Aerospace Plane (NASP) and the Air Force Integrated High Performance Turbine 
Engine Technology (IHPTET), in particular, have been evaluating the properties, mechanical 
behavior, and failure mechanisms of this class of materials under typicaJ anticipated use 
conditions. While failure modes depend on the specific mechanical and thermal loading 
conditions, fiber failure has been identified as either a direct mode of failure or as a dominant 
mode of failure after some other mode such as matrix cracking has produced an increase in fiber 
stresses. 

Direct failure of fibers which act as a bundle embedded in a ductile matrix material is 
considered to be the primary cause of composite material failure under creep, low cycle fatigue, 
and in-phase thermo-mechanical fatigue (IP TMF). The process of breakage of the fiber bundle, 
however, is not very well understood. Results of IP TMF tests on composites with SiC fibers 
having different matrix materials, and tested at different maximum temperatures, show apparently 
different modes of progressive failure after a fiber has broken. Timetal matrix composites at 650 
C maximum temperature show debonding of the fiber/matrix interface in the region adjacent to 
the fiber crack. Ti-6-l-4V composites at 427 C, on the other hand, show an apparent propensity 
for matrix cracking adjacent to the fiber break. To evaluate the potential for forming an interface 
crack, and to shed light on the mechanics of crack formation and interfacial toughness, the present 
study was undertaken. The analysis refrains from making many of the simplifying assumptions 
about stress distributions which are commonly utilized in analyses of this type. Instead, a rigorous 
and systematic elastic analysis is conducted using only the boundary conditions as an"assumption" 
in addressing the problem. Moreover, the general problem is broken down into key problems 
which are examined individually and will finally be combined to provide answers to the general 
problem. 

It was found convenient to divide the work into two different parts. 

In part I, we examine the load transfer characteristics of a material system after a fiber 
breaks. 

In part II, we examine the residual stresses due to curing and thermal stresses due to 
differences between the thermal expansion coefficients of the matrix and fiber. 

In part III, we are developing a sine-function based numerical method that is geared 
specifically for solving 3D problems that posses stress singularities, in certain regions of the body. 
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ABSTRACT 

In this study, the load transfer characteristics of a broken fiber are investigated. 
The problem consists of a cylindrical fiber that is embedded into a matrix material. The fiber axis 
is assumed to coincide with the z-axis and a crack is assumed to be present on the plane z = 0 and 
for r < a. Far away fi-om the crack, the fiber is subjected to uniform external load of o,,. 

Moreover, adjacent to the crack and along the interface (see fig. 3 ), the matrix and fiber 
surfaces are assumed to slide along the interface length -c < z < c, in the presence of a variable 
fiiction T/z = (J.CT/r  . On the other hand, perfect bonding is assumed to prevail all along the 
remaining interface, i.e. for | z | > c. 

For the solution of the problem, we utilize a Fourier Integral Transform whereby we 
reduce the problem to that of the solution of a singular integral equation along the interface path 
< < z < c. The solution of this integral equation then allows the determination of the displacement 
and stress fields. Two areas of special interest immediately come to mind, (i) the neighborhood 
adjacent to the point | z | = c and r = a, and (ii) the neighborhood adjacent to the point z = 0 and 
r = a. 

The analysis reveals that the load transfer characteristics depend heavily on the material 
properties of the system. 



1. Introduction 

It is well recognized that realistic modeling of deformation and damage accumulation in 
the fatigue of metal-matrix composites depends heavily on the mechanisms which govern the 
damage. Experimental evidence of the accumulation of strain in a SiC-fiber/titanium-matrix 
composite, in conjunction with fractographic examination of the samples, point to fiber breakage 
as the dominant mode of failure during thermomechanical fatigue tests. During this physical 
process individual fibers break periodically, at random locations, and throughout the composite. 
Considerable work on the modeling of broken fibers in composites has already been conducted 
over a number of years. In the literature one may find the work of Rosen (1964) using a shear- lag 
model. The stress concentration present in the immediate vicinity of a broken fiber was first 

analyzed by Hedgepeth (1961) and has subsequently been addressed by many others who have 
utilized other simpler models. Recently, Penado and Folias (1989) investigated the stress 
concentrations in a fiber based on three dimensional considerations. Moreover, the 3D edge 
effects, when a fiber meets a free surface, have been investigated by Folias (1989). A closer 
inspection, however, of the local neighborhood of a fi-actured fiber (see Fig. 1) reveals that the 
problem is much more difficult that it was originally thought of This is because one must also 
account for the vertical interface cracks that develop along the sides of the fiber. One may also 
recall the fact that composites, in general, are attractive in using them for practical applications 
because the fibers are designed to carry most of the applied load. Consequently, when a fiber 
breaks, at least locally, the load must then be transferred somehow to the other portion of the 
broken fiber via the matrix. This suggests, therefore, that the adjacent matrix must now carry a 
much higher stress load. In reality, however, one may conjecture that (i) there is some 
redistribution of the load to the adjacent unbroken fibers, and that (ii) there is perhaps an increase 
in the load which the adjacent matrix must now carry. Recently, Nicholas and Ahmad (1994), 
through the analysis of a relatively simple model, were able to provide some qualitative answers 
regarding this complex phenomenon. On the other hand, a more sophisticated stress analysis of 
the local problem, coupled with the resuhs of a sporadic sequence of fiber breaks along the 
composite material system, can provide important information and guidance to material designers 
for the development of future material systems. 

2. Formulation of the Problem 

Consider the equilibrium of a material system that occupies the space |x|<oo,|y|<oo , 
I z I < 00 and contains a cylindrical fiber that is embedded into a matrix space ( see Fig. 1). The 
fiber axis coincides with the z-axes and the fiber radius is r = a. Both fiber and matrix materials 
are assumed to be homogeneous, isotropic and linearly elastic. At the mterface (r = a ) perfect 
bonding is assumed to prevail. 

In this model, we envision the failure to take place in three different stages. During the 
first stage, a plane crack is formed in the middle of the fiber region, i.e. at r < a and on the plane 
z = 0, and advances until it reaches the fiber/matrix interface boundary. This problem has been 
studied by others and recently more rigorously by Pagano et al (1995 ). Subsequently, during the 
second stage, a certain length along the fiber/matrix interface, above and bellow the plane z = 0, 
has debonded and the matrix is now allowed to slip in the presence of a non-constant fiictional 



force. Finally, during the third stage, the fiber crack pups open and a finite jump in the fiber 
displacement is formed. The present analysis deals with the events of the second stage. We believe 
that the analysis of this stage v^U provide important information related to the failure process and 
may reveal the suflBcient conditions' required for the subsequent advancement of the failure to 
that of stage three. Putting it another way, it is hoped that it will reveal the' suflBcient conditions' 
required to suppress any further development of the failure. 

At a certain instant in time, the fiber breaks in two peace^as shown in Figs2 and 3. The 
separation distance Ao , denotes the maximum displacement between the fiber faces after the 
system has been loaded. It is also assumed that, subsequent to the fiber breakage, splitting 
between fiber and matrix along the interface and up to a distance -c < z < c is simultaneously 
being formed in the presence of a non-uniform fiictional force. As to loading, far away fi-om the 
location of the break, the fiber carries a uniform stress Go parallel to the direction of the fiber 
axis. Similarly, the matrix carries a uniform stress  Oi  also in the direction of the fiber axis. 

In the absence of body forces, the differential equation governing the stress potential 
fiinctions O^^  and O^'"^ is given by 

^0=0 (1) 

where V* is the biharmonic operator. The displacement and stress fields are then given in terms 
of the potential fiinctions as : 

(i) displacement field: 

2GUr=-^ (2) 

2Gw=2(1-v)V2a)-0 (3) 

(ii) stress field: 

Czz = (2-v)V=f-0 (5) 

t. = (1-v)V=f-0 (6) 

where V is Poisson's ratio and G the shear modulus. 

As to boundary conditions, we require that: 



(i) matrix region: 

at z = 0 : 
at z = 0 : TSZ"^ = 0 

(ii) fiber region: 

at z = 0 : TS = 0 

at z = 0 : Jj27craSdr=0 

atz = 0:        VV<^(r,0) = Aoi/a2-A^ 

(7) 

(8) 

(9) 

(10) 

(11) 

It may be noted here that the latter represents a crack that has the shape of a very sharp 
ellipse. In this study, the primary emphasis was to examine the effect that a non-uniform frictional 
force has on the mechanism of failure and to gain some further insight on the evolution of the 
events of this complex crack formation. In a follow up paper, which the authors are presently 
working on, the boundary conditions have been relaxed by allowing now the fiber displacement w 
to possess a finite jump. 

(Hi) interface region: 

atr = a u?=ur 

atr = a „(0 _ „m 
Ctrr = Crr 

atr = a \fl/(f) = yi^/n) 

atr = a Xrz = Tfz 

at r = a Xrz = fXCTrr 

0<z<oo 

0<z<oo 

0<z<oo 

c<z<oo 

0<z<c 

(12) 

(13) 

(14) 

(15) 

(16) 

Perhaps it may be appropriate here to note that one of the difficulties presented by 
boundary condition ( 16 ) is that the shear stress Xrz is an odd fiinction of z while the normal 
stress <3rr    is an even fiinction of z . At first glance this appears to be O.K., however the 
mathematical satisfaction of such type of a boundary condition requires some very special 
attention. 

(iv)far away from the plane z = 0: 

Gzz = Go (17) 



(m) 
CTzz   = CT1 ( 18 ) 

where a 1  is related to Go via the relation : 

lim|z|^(Eg-8g^) = 0 (19) 

Moreover, in order to complete the formulation of the problem we must require that: 

as r & z-^oo : all complementary displacement and stresses must vanish 

and the continuity condition : 

at r = 0 : all the complementary displacements and stresses for the fiber must be 
bounded 

3. Method of Solution 

Without going into the mathematical details, we have constructed the following stress 
potential fiinctions that exhibit the proper behavior at infinity. 

0<^ = Joi^^^^oisf) + B^f>(sr)h (sr)}s\n{sz)ds 

± S { C? + D?a„ Izl }exp(-an Izl) Jo(a„/) (20) 
/)=0 

where the upper sign refers to z > 0 and the lower sign refers to z < 0, 

den = 2GfVm - Gm'^f- GfVf{1 - 2Vm) -Gf+Gm- 2VfVn,Gm    ( 21 ) 

3^^ = -6^(4G;nV;„(1 - Vf) - 2GfiVm + Vf) + AVmVfGf 

+Gf-Gm} (22) 

^^"^ = 2^)i-^fGf(^ -2Vm) + VmGmO -2Vf)} (23 ) 

and 

0^'") = lo{>A('">Ko(sr) + B('")(sOKi(sr)}sin(sz)cfs 

+a('")z3 + ib('")zr2 (24) 



with 

+Gf-Gm}^ (25) 

^^'"^ = 2^){^'r,Grr, - VfGf+2VrnVf{Gf- Gm)}^ ( 26 ) 

The constants A^^,B^^, C^^, D^^,A^'"\ B^")    are to be determined from the boundary 
conditions of the problem. 

By construction, boundary conditions (7 )-( 8 ) are automatically satisfied. Next, to satisfy 
boundary condition (9 ), we let 

Cf? = 2VfD? (27) 

Similarly, to satisfy boundary condition ( 10 ) we choose ttn , n = 0,1,2,..., to be the roots of 
the equation 

Ji(ana) = 0 (28) 

in view of which eq. ( 10) now reduces to 

J^ s2[2(1 - Vf)B^^ + A^f>]h{sa) + saB^^lo{sa)}ds = -fa.        (29) 

We will suppress, at this time, the satisfaction of the above condition but will return to it at a later 
time. 

Next from eq ( 11), we have 

1-v 

^f   n=0 
w^Hr, 0) = -^ I a^D?Jo(a„/) = AoVa^TT^ (30) 

in view of which the coefficient Dn   may now be determined as 

•^?D? = #^:^;     n = 1,2,3, 
(oLna)' Gf   ^"^"   -  jUanB)  ,„.„.§ ■ 

(31a) 

ind 

■^a?D? = |A„a (3 lb) 



Thus, the crack opening in the fiber region becomes a veiy sharp ellipse. Perhaps it may be 
appropriate here to note that the constant Ao has now been related, through eqs (29 ) and ( 31), 
to the applied load Co . Moreover, the matrix load stress CTI is related to the fiber load stress 
Co through the eq. ( 19 ). More specifically, 

_ f Qm [~^^"'^r-G/+Gfn+2vmVrGr2GfnV^m+G/Vm+GmV/nl ^ 

■• ~ I G/    [2GA'm-GmV/-GA'ff2vmv,GrGffGm-2vA'mGm]   f^O ( ^2 ) 

Next, the boundary conditions at the interface r = a 

U?-U?'^ = 0 (33) 
Grr —Grr    =\J ( 34 ) 

become respectively, 

Jo s2 {isa)Ko(sa)B^^^ + K, {sa)A^'"'^ + G(sa)/o(sa)i3(^ 

+G/i (sa)>A(^}cos(sz)cfs = 0 (35) 
and 

J^ s''{[l^{sa) - (sa)/o(sa)]/\(^ + [-(1 - 2vf)(sa)/c,(sa) 

-(sa)2/i(sa)]B(^ + [Ki(sa) + (sa)Ko(sa)]>!\(^ 

+[-(1 - 2v;„)(sa)Ko(sa) + (sa)2/<i (sa)]e('")}cos(sz)c/s = 

= - S aa?{1 - ttnIzl }D?Jo(ana)exp(-a„ I2I) (36) 
/)=0 

Similarly, the boundary condition' 

ViAO _ y^tri) ^0 ( 37) 

becomes 

Jo s2{/o(sa)A<') + [4(1 - Vf)/o(sa) + (sa)/i(sa)]e(') 

-GKo(sa)>A<'") + [4(1 - V;„)GKo(sa)- G(sa)Ki(sa)]S('")}       (38) 

xsin(sz)c/s= f {2(1 -Vf) + anlzl}a2D?Jo(ana)exp(-a;,l2l) 
/7=0 

' See remark on top of page 3. 



where we have adapted the definition 

G = ^. (39) 

In order to facilitate our subsequent discussion, we define 

e = (sa)^;   e, = (sa)^ (40a.b) 

and 

A^'-^y      e« = ^ (4.a.b) 

In view of eqs ( 40 a,b ), ( 41 a,b ), (42 a,b), equations (35 ) - ( 36 ) and ( 38 ), by Fourier 
inversion, become respectively: 

^(0 + eB(0 + GA^'") + GetB^""^ = 0 (43) 

(1 - e)M^ + [-(1 - 2vf)e - (sa)2]S(^ + (1 + eO>A('"> 

foo„au +[-(1 - 2vn,)et + (saf]B^'"^ = |f J* ^f sin(s^)cf4 (44) 

and 

eA^f> + [4(1 - vf)e + isaf]B^^ - GetA^'"^ 

+[4G(1 - vf)et - G{saf]B^'"^ = If Jo {2(1 - Vf)(y 

-4f}sin(s4)c/^ (45) '3^ 

where we have made use of the definition 

^(0 U{1) = S a2D),^exp(-a„ 1^ I)Jo(ana) . (46) 
n=0 

A 

The system of eqs. ( 43 )- ( 46 ) may now be solved in terms of one of the unknowns, say S^'"^ 
More specifically, 



km = ^B*"" + if i ro 5f sin(s5)c/4 + If ^ To UsHsDdl     (47) 

R(f) _ _(hG)(1+eO 2(n7) _ [(1-G)(sa)^-(1-G)(1-2vm)eH-26(1-vm)efT Arm^ 
°   -    2(i-v,)e ^ 2(1::;;^ ° 

+ |flJ*asin(S^)Cf^ (48) 

where for simplicity we have adopted the following definitions : 

P2 = -(sa)2 -H (1 - 2v.)e, - G(1 - e)e, - I(!-2v.)-(i-Msa)^i 
2(Uvf)e 

^, [(1-G)(sa)2-(1-G)(1-2vm)9H-2G(1-V;„)et] 
(51) 

_        [(1-2vr)e+«{1-e)+{sa)2] 
P3 = e  ( 52 ) 

Finally, the last boundary condition becomes 

rlinflr-^axS'^    ! C < Z < oo (53a) 

Uimr->a(na?'^)  ;   0<z<c (53b) 

where 

TS = JO S^{[2(1 - vf)+e]B(^^ + A^f>}exp(-s(a- 0)sin(sz)cfs    (54) 

xS^ = -Jo s3{>A('") + [-2(1 - v;„) + e^]e('")}exp(-s(r- a))sin(sz)c/s   (55) 

aS"^ = - J J^ s2 {[1 + er] Ac") + [-(1 - 2vm)et + (sa)2]B('")}       (56) 

xexp(-s(r- a))cos(sz)c/s 

It remains, therefore, for us to satisfy the last boundary condition ( 53 ), as well as eq. 
( 29 ). This will ultimately tie the remaining constant in terms of the applied load of the material 
system. 



4. The Integral Equation 

In order to solve the dual integral equation ( 53 ), we first cast it into the form of a Cauchy 
singular integral equation of the first kind. For this reason, we let at r = a 

Jo s^(sa)B('">sin(S2)cfs = \|/(z)  ;0<2<c (57) 

and 

j°^s\sa)B^'"^cos(sz)ds = ^(z)  ;0<z<c (58) 

where Vj/ represents an odd fiinction of z and (j) represents an even fiinction of z . Furthermore, 
the reader may be reminded that, by construction, equation ( 53a ) is automatically satisfied along 
the interface segment C < Z < oo   . Thus, it remains for us to satisfy equation ( 53b ) along the 
interface segment 0 < Z < C.   Without going into the mathematical details, equation ( 53 ) may 
now be written as, after some straight forward manipulations, 

<^ir^^^^^di = f(Z)       ■    0<Z<oo (59) 

where we have adopted the following definitions : 

f(Z) = 2AoE{fe(Z) + fo(Z)}   . (60) 

with 

, ^3(1-Hi+2nvr)fc      4i>3(6+^t+2^vr) 2Ab^^ .^, . 

f..        -4+2vf-G     /)2(-16+8vr4G-12n)       24ixb*  . 
^°y^) - i (z2+t^)2 (z2+/,*2)3 (z2+62/^    • ^ ^^ ^ 

In writing the fiinction f (z), we have made use of the following approximation 

Ui^) = -Ao§{^} (63) 

with 

^=^c5^;   ^« = -0.2089^^H^;:   6 = 0.0700a (64abc<l) 

AGO-Vf) 

^"^ ~ ~(3-4vt+G)   ■ 

The general solution of the above integral equation is given by 



^iz)-^^^z)=^^jMr^MB'^-i^ (65) 
where k now represents an arbitrary constant and where the integrals are to be evaluated in the 
Cauchy Principal Value sense. Without going into the tedious mathematical details, the integrals 
in equation ( 65 ) may now be evaluated and the following result is obtained after simplification. 

where the coefficients de ,do^ , k = 0, 1, 2, 3, 4 are long expressions involving the material 
constants of the system. Thus, in view of equations ( 65 ), (57) and ( 58 ), one may now 
determine explicitly the coefficient 6^'"^ . In particular, 

c3/'co\0('n) _ _^-§.2    y f <^o*^       C      r^l(SC) /cc^    J2(SC) ^ 

d^e^      1      rJojsc)        Kc'    J^(sc) .      ,. 
^ (c^+b^)"*-    1     "^(02+62) (sc)   +-J/ (67) 

Moreover, in view of equations ( 47) - ( 49) and ( 67 ), the remaining coefficients may now be 
determined and the displacement and stress fields can be recovered explicitly. 

5. The Stress Fields 

As it was previously noted, it is now relatively easy to recover the displacement and the 
stress fields everywhere within the fiber, and within the matrix, region of the material system. Two 
areas of special interest are worthy of examination, (i) the neighborhood of the point | z | = c and 
r = a ( see Fig. 4), and (ii) the neighborhood of the point | z | = 0 and r = a. In this report, we 
examine the stress field of the former. Suppressing the long and tedious algebraic manipulations, 
one can show the stresses to be: 

stress field at \z\ = c andr = a: 

xS = aoBoTf {cos(f) + nsin(|)} (68) 

+aoBi 71" sin((|)){cos(|) + nsin(|)} + 0(8°) 

^-^ = aoBoTilcosd) - nsin(|)} ( 69 ) 

+aoSi yf sin((j)){cos(|) - ^sin(f)} + 0(8°) 

10 



<sT = -CoBoTi {^cos(|) + sin(f)} (70) 

-aoBi Ti sin((t)){^cos(|) + sin(|)} + 0(8°) 

cyg) = _ag") + 0(8°) (71 ) 

where 

p        3.032f)A   Gr. n(1+2vrH9+>i+2tivr)(g)^-K6-2M^v/')(g)^ , 1 
Do-      c    ^oaol (3-4vffG) > (i+^|)2)(7/2) (/2a) 

e,=-|i^Bo (72b) 

Finally, returning to eq ( 29 ), we see that the quantity A©   may now be related to the 
applied load Go ■ 

6. Conclusions 

AA^thout going into the numerical details, it would be of practical interest to examine how 
well the actual physical boundary condition Czz = 0 is satisfied on the plane z = 0. For this 
reason, we assume 

»m 
= 10,n = 0.5.| = 5,Vf=0.26 (73) 

and upon defining 

S^-^\{c^&-co}z=^dr (74) 

one finds that 

GfSho + ^or=^    , (75) 

or upon solving for A© 

Ao = -^i = 0-629^     • (76) 

In view of the present analysis, the numerical result for the function S is given in Fig. 5. 
The reader will notice that its profile is a straight line up to approximately r/a =0.65 where by it 
begms to deviate. This, however, was to be expected for it is the resuh of our approximation of 
the fiinction U (see equation (63)) with a single term. Moreover, it may be noted that the fiinction 

11 



S does not exhibit any oscillations. While this approximation does effect the boundary condition 
Czz = 0   in the neighborhood of the point r = a and z = 0, it can be shown that it has no effect 
the singular term of the stress fields in the vicinity of the crack tip | z | = c. In conclusion, the 
actual boundary condition is seen to be satisfied a lot better than expected. 

Returning next to the stress fields, we note that the usual -j=- singular stress behavior, 

which is characteristic to crack problems, still prevails in the vicinity of the crack tip, i.e. at the 
interface point | z | = c. Furthermore, the unexpected condition 

oJr"'^ag^ = 0(8°) (77) 

also holds, suggesting, therefor, that an increase in the stress Czz   is followed by a proportional 
decrease in the stress  Grr   . 

As a practical matter, the analysis will now be used to derive a criterion with which to 
predict the debonded interface length 2c, as well as the sufficient conditions required to suppress 
any further development of the interface crack to that of stage three (please see discussion on top 
of page 2 ). Moreover, as it was previously noted, we are presently examining the third stage 
where the fiber crack has now pupped and where the fiber displacement w has been allowed to 
posses a finite jump. The resuhs will be reported in a follow-up paper in which the effects of a 
thermal loading have also been included. 

12 
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SYSTEMS DUE TO A THERMAL EXPANSION MISMATCH 

by 
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Michael Hohn 



ABSTRACT 

Residual stresses due to curing and thermal stresses due to differences between the 
thermal expansion coefficients of the matrix and fiber may have a major effect on the 
microstresses within a composite material system and must be added to the stresses induced by 
the external mechanical loads. Such microstresses are often sufficient to produce microcracking 
even in the absence of external mechanical loads, example during the cooling process. 

In this report a few selected results are presented for a material system consisting of SIC-6 
cylindrical fibers which are periodically embedded into a plate matrix consisting of beta21 
material. The results are based on a linear elastic micromechanics model which provides the stress 
profiles due to (i) a uniform load perpendicular to the direction of the fibers and (ii) due to a 
thermal expansion mismatch. In this analysis/perfect bonding between the fiber and the matrix is 
assumed to prevail. For this case the analysis shows that at a free edge and for a lateral load, there 
exists a weak stress singularity which increases as the temperature increases. Selected stress 
profiles are given for the above two loads. Moreover, the application of a fracture criterion shows 
that no failure is likely to take place for a cooling temperature AT of 900° C. Thus, the growth of 
any pre-existing microcracks will be suppressed. 



1. INTRODUCTION. 

Residual stresses due to curing and thermal stresses due to differences between the 
thermal expansion coefficients of the matrix and fiber may have a major effect on the 
micro-stresses within a composite material system and must be added to the stresses induced by 
the external mechanical loads. Such micro-stresses are often sufficient to produce micro-cracking 
even in the absence of external loads, example during the cooling process. Furthermore, if the 
material system is thermally fatigued, these residual stresses may cause some of the existing 
micro-cracks to grow and coalesce and thus form the presence of larger cracks. 

Thus, if rational designs in the use of fiber-reinforced metal matrix composites are to be 
made, their performance under static, dynamic, and thermally fatigued loads need to be 
predictable. The first step towards this goal is the realization that the ultimate failure, as well as 
many other aspects of the composite behavior, are the resuh of growth and accumulation of 
microdamage to the fibers, matrix and their interfaces. Thus, it appears that any generally 
successful model of performance and failure must incorporate the effects of this damage in some 
way. This certainly represents a challenge. In this paper, we address the form of such damage due 
to the residual stresses developed as a result of the thermal expansion mismatch between the 
fibers and the matrix. 

In this work, a systematic, 3D, micromechanics approach is used in which the fibers of a 
composite material system are modeled as cylindrical inclusions that are embedded into a matrix 
plate. The analytical model is then used to predict, the residual stresses due to a thermal expansion 
mismatch, e.g. during a cooling process. Moreover, the model provides a better understanding of 
how the residual stresses are developed and how they can be controlled particularly in relation to 
ceramics where there is no ductility to accommodate any plastic deformation. 

The analysis reveals the dependence of the residual stress field on the fiber volume 
fraction ratio, identifies the critical locations where a crack is most likely to initiate and 
subsequently propagate, recovers the interface shear stress profile and provides important 
information and guidance to material designers for the pre-selection of fiber and matrix materials 
in order to alleviate some of the residual stresses. It may be noted that the theoretical model is 
applicable to ceramic and metal/matrix composite systems. 

2. MATHEMATICAL MODEL. 

Consider in infinite plate matrix which consists of material Beta21, see fig. 1. The matrix 
plate is assumed to extend to infinity both in the x- and y- directions. In the z-direction, the matrix 
plate is assumed to have a finite dimension, 2h, in order to capture any possible 3D effects that 
may be present. A uniform and square periodic set of cylindrical, SIC-6, fibers are embedded into 
the matrix plate in the directions of both x and y. Two types of loads are being considered : (i) a 
uniform transverse load o„ perpendicular to the direction of the fibers and along the y-direction 
and (ii) a uniform temperature load AT (cooling) that is applied throughout the material system. 
Both fibers and matrix are assumed to be homogeneous and linear elastic. 



K - 2w 

Fig. 1. Geometrical configuration. 



The governing equations, are the well known Navier's equations coupled with the Energy 
Balance equation. More specifically, 

l-2v dx^^   "       l-2v dx      "^ 

l-2v ey ^ ^ l-2v 9y      " 

l-2v 5r ^ ^   ^       l-2v  dz      "^ 

W^T=0 (4) 

As to boundary conditions, (i) the appropriate stresses are required to vanish at the fi-ee 
edge, (ii) perfect bonding is assumed to prevail at the fiber / matrix interface, (iii) finally the 
boundary conditions within the cell configuration are required to be satisfied. Once the 
displacement field has been completely determined, the stresses can be obtained by using the 
stress-strain relations: 

Oy = X5ijs^+2Gs,j-a(3X + 2G)(,T-To)5ij. (5) 

3. THE 3D DISPLACEMENT FIELD. 

Without going into the mathematical details, the 3D displacement field has been derived by 
Folias (1976) and can be expressed as : 

^(cyj) = _i^ f #{2(wy - lyi(Pvr) +/n/2(Pvr)} ( 6) 

where. 

+1 ^ cos(a„;i)cos(a„2) +ri' -y-^ + ^z^-^^ 

v(^X/^ = ^ S ^{2(w, - iyi(PvZ) + m/2(Pvr)} ( 7) 

- L ^ cos(a„/i)cos(a„z) + ^if +ri' -y^ - ^^ V 

^(cx,) = ^l ^{-2(m; - iy,(PvZ) + m/2(pvz)} - ^,z'-§r        ( 8) 
J     v=l 

/l (PvZ) = COS(Pv/j)COS(pvZ) ( 9) 

/2(Pvz) = (pv/i)sin(Pv/i)cos(Pvz) - (pvz)cos(pv/j)sin(pvz) (10) 



(£ + $-P^)^'=0 (11) 

(£ + $-Pv)^'=0. (12) 

and /i,/2,13 are 2D harmonic functions. Furthermore, it may be noted that the first series has 
complex eigenvalues and eigenflinctions while the second has only real eigenvalues and 
eigenfunctions. For an explicit definition of all fiinctions see Penado and Folias (1989). 

4. LOADING TRANSVERSE TO THE FIBERS 

(i) Interior Stress Field: 

For a uniform transverse loading along the fiber direction and under the assumption that 
perfect bonding prevails at the fiber / matrix interface, the 3D stress field (at the interface) and 
along the fiber length is found to be constant ( see Fig. 2 ) all along the interior and that as one 
approaches the fi-ee surface a boundary layer is noted to prevail where the stress field increases 
rather rapidly. This rapid change suggests, therefore, the presence of a possible stress singularity. 
Moreover, the width of this 3D boundary layer is, approximately, two fiber diameters fi-om the 
fi-ee edge. The reader may also note that a second, 3D, effect is that the amplitude of the stresses 
at the center of the fiber length is, in general, a function of the ratio of fiber diameter / fiber 
length. If that ratio, however, happens to be less than or equal to 1/10, then all along the interior a 
'pseudo plane strain' condition prevails. Figs. 2a, 2b depict the profile of the interface stresses at 
0=0 as a function of z / h. The numerical results are specialized for the material system : SCS-6 / 
fibers, Beta21 / matrix. Figs. 3, and 4, show typical interface stress profiles of the matrix and fiber 
on the plane z=0, and as functions of the angle 0. The reader may notice that the max. of the 
stresses occurs at the location 0 = 0. 

(ii) Edge stress Field: 

As it was previously noted, in the neighborhood where one approaches a free surface e.^. 
the edge of the plate or in the vicinity of crack bridging ( see Fig. 5 below), there may very well 
be present a stress singularity. Utilizing a local, 3D, asymptotic analysis one can substantiate the 
presence of a weak stress singularity. Complete details of this analysis may be found in the work 
of Folias (1989 ). Without going into the mathematical details, a summary of the results, at room 
temperature and for the composite material system discussed, is given below: 



NORMALIZED STRESSES AT THE INTERFACE 

MATFRTAL SYSTEM : SCS-6 / FIBER, BETA21 / MATRIX 

LOADING : UNIFORM TENSION TRANSVERSE TO THE FIBER 

FIBER DIAMETER / FIBER LENGTH = 1/10 

o 

O   0.8 -- 

o 

z/h 

Fig. 2a. Interface matrix stresses as a function of z/h. 



NORMALIZED OCTAHEDRAL SHEAR STRESS AT THE INTERFACE 

MATERIAL SYSTEM : SCS-6 / FIBER, BETA21 / MATRIX 

LOADING : UNIFORM TENSION TRANSVERSE TO THE FIBER 

FIBER DL\METER / FIBER LENGTH = 1/10 

z/h 

Fig. 2b. Interface matrix octahedral shear stress as a function of z/h. 



NORMALIZED STRESSES AT THE INTERFACE 

MATERIAL SYSTEM : SCS-6 / FIBER, BETA21 / MATRIX 

LOADING : UNIFORM TENSION TRANSVERSE TO THE FIBER 

FIBER DIAMETER / FIBER LENGTH = 1/10 

1.4 

^L\TERIAL SYSTEM : SCS-6 / FIBER, BETA21 / MATRIX 

o 
D 

o 
to 

3.5 

-I 1 1 \ 1 1 >- 

0.5 1 1.5 2 

e 
Fig. 3. Interface matrix stresses on the plane z=0 and as a function of 9. 



NORMALIZED STRESSES AT THE INTERFACE 

MATERIAL SYSTEM : SCS-6 / FIBER, BETA21 / MATRIX 

LOADING : UNIFORM TENSION TRANSVERSE TO THE FIBER 

FIBER DLVMETER / FIBER LENGTH = 1/10 

1.5 

o 
JO 

o 
X) 

o 

-0.5-- 

0.8604 

0.8602-- 

0.86 -- 

0.8598-- 

0.8596-- 

0.8594 

Fig. 4. Interface fiber stresses on the plane z=0 and as a function of 9. 



CORNER ANALYSIS AT THE EDGE 

T 

i 

Possible composite failure mode 

FIBER MEETING A FREE EDGE 

Local 3D Stress Field : (Folias IJF 1989) 

o/, = p-«Fi,(e,(j)) 

where for a Titanioum matrix and SiC fibers 

a = 0.110, at room temperature 

a = 0.190, at 900" C 

(i) location : (j) = f,/or   Gf/G„ = 3.608 

o^e^ = -4.823p-«5W 

(ii) location : <t> = 0. 

a'-;;^^ = -9.97p-°5(« 

a^ee^ = -3.391p-"5('">. 

Fig. 5. Geometrical configuration and basic results. 



OCTAHEDRAL SHEAR STRESS AT THE CORNER OF A FREE EDGE: 

^ Ano The max. octahedral shear stress for G/G„ = 3.608 occurs at 9 = 40 

4-6=_ 

4.5 

4.4- 

? a 

o 
H 

4.3- 

4.2 - 

4.1- 

1.2 1.4 

<t> 

REMARK : Crack will initiate at the fiber edge and at the interface and will then 
follow the direction of the maxp^^tahedral shear stress. 

Fig. 5b. The octahedral shear stress at the corner. 
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The following observations are worthy of note. First, as the ratio of the shear moduli 
increases, so is the stress singularity. This is compatible with our physical expectations and within 
the assumptions of our theory. Second, all things being equal, at the edge the controlling stress for 
failure is the radial stress particularly at the location (j)=0 and 9=0. 

Room Temp. 900-X 

at (I, = 0 :     aTla^'= 2.94 cT/c'iS' = 2.94 

at<l) = 7r/2:   0^0^ = 2.33 0^/0^^=2.18 

Similarly, in the vicinity of the edge, the octahedral shear stress attains a maximum at an 
angle <|)=40 degrees (see Fig. 6). It is interesting to note that in this neighborhood, the ratio of 

XocfmaxlrOOmfe/77p/Tocfmaxl9000C= 1/2.09 

This suggests, therefore, that as AT increases the application of a transverse loading will cause the 
matrix to undergo substantial more plastic deformation in this region. 

Computing next the displacement at the free surface z = h, we notice that its magnitude 
increases at elevated temperatures. 

wl^,0=O,Room7-emp/M'^,e=0,9CX30C = 1/1 -6. 

Physically, this suggests that a mode I, H and HI crack failure will initiate at the edge and 
at the interface due to an applied load transverse to the fibers. 
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5. RESIDUAL STRESSES DUE TO A THERMAL LOAD. 

Residual stresses due to curing and thermal stresses due to difFgrences between the 
thermal expansion coefficients of the matrix and fiber may have a major'effect on the 
microstresses within a composite material system and must be added to the stresses induced by 
the external mechanical loads. Such microstresses are often sufficient to produce microcracking 
even in the absence of external loads, example during the cooling process. 

In this investigation, a systematic, 3D, micromechanics approach is used in which the, 
fibers of a composite material system are modeled as cylindrical inclusions which are embedded 
into a matrix plate. The analytical model is then used to predict, the residual stresses' due to a 
thermal expansion mismatch, eg. during the cooling process. Moreover, the model providesoa 
better understanding of how the residual stresses are developed and how they can be con*E?>^d 
particularly in relation to ceramics where there is no ductility to accommodate plastic • 
deformation. - : 

The analysis reveals the dependence of the residual stress field on the fiber'volume fi-action 
ratio, identifies the critical locations where a crack is most likely to initiate, recovers the interface 
shear stress profile and provides important information to the material designers for the 
pre-selection of fiber and matrix materials in order to alleviate some of the residual stresses. 

Without going into the mathematical details, we consider a composite material system 
consisting of SIC-6 fibers which are embedded into a beta21 matrix plate and the entire system is 
then exposed to an environment of a uniform cooling temperature AT. While it is true that the 
material constants do change as a fiinction of the temperature, the thermal coefficients appear in 
the solution as a ratio and interestingly enough this ratio change«vary little. On the other hand, the 
ratio of the shear moduli changes considerably as the temperature varies. Thus, the results-are 
very much dependent on the material properties which one uses. Thus, if one bases the analysi? on 
the shear moduli ratio at room temperature, the following stress profiles are recovered at :hp fiber 
/ matrix interface. Fig. 7 depicts the radial matrix stress on the plane z=Oa{id asa fijnction of the 
angle 6 . It is noted that the radial stress is compressive. Similarly, the tangentiaT stress is tensilrin 
nature and its maximum occurs at the location of 9 = 0. In general, the location'of this maximum; 

is a fiinction of the material properties and particularly the shear moduli ratio. Moreover, in the 
above analysis perfect bonding was assumed to prevail at the fiber / matrix interface. If, however, 
we relax the conditions at the interface and allow slippage then the maximum occurs elsewhere. 
More specifically in this case it occurs at 0 = 45. 

Examining next the possibility of matrix cracking, it becomes evident from thcLabove that 
no cracking will occur in the matrix for a AT= 900°C. This matrix material is too strpng for 
preexisting microcracks to grow. Examination of the Ozz stress also shows that no cracks will 
develop in that direction either. These results are in line with the obtained in house fesults based 
on finite elements (J. Kroupa, 1994). 

12 



MATERIAL SYSTEM : SCS^ / FIBER, BETA21 / MATRIX 

LOADING: UNIFORM THERMAL LOADING 

< 

GfIGn, = 3.60 

Fig. 7. Interface radial matrix stress on the plane z=0 and as a function of B. 
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MATERIAL SYSTEM : SCS-6 / FIBER, BETA21 / MATRIX 

LOADING : UNIFORM THERMAL LOADING 

< 

(A 

X 

Z 

z 
< u 
Id 
U 

ad 
H 
Z 

1.35 

1.2 

1.15 

1.1 

1.05 

V^ = 0.39 
GfIGm = 3.60 

Fig. 8. Intlrface Oee matrix stress on the plane z=0 and as a function of 0. 
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Finally, it should be noted that the effect of the shear moduli ratio on the interface stresses 
is substantial. This can be seen by the following comparison of the tangential interface stress when 
usincr three different shear modulii ratios which reflect different temperature levels: 

a,e /(a„G„ AT) o^ /(a„G„ AT) c^ /(a„G„ AT) 
_V^_ Room Temp. Mid Temp. HiehTemp. 

0 39 1.36 1.59 1.64 

Altliough it would be desirable to have a program in which the material properties do vary with 
temperature, one can compensate by talcing the results corresponding to the high shear modulii 
ratio. The thermal expension coefficients on the other hand appears as a ratio which ratio does not 
vary appreciably to make any significant differences. 

The variation of the normalized tangential interface stress as a function of the fiber volume 
fraction, for this material, is almost linear and may be approximated v^th the equation 

ix ,.,GmAr 
= 0.92+1.02F>+0.28    V}. (13) 

6. CONCLUSIONS. 

In view of the above, the matrix will not exhibit any cracking as a result of the residual 
stresses which are developed during the cooling process ( AT= 900°C). Moreover, the residual 
stresses predicted are in very good agreement with those obtained in house. ( WL/MLLN ) 
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1    Introduction 

In design, anticipation of material failure is vital. Over the last decades, a 
theory first proposed by Griffith has become one of the most used tools in 
prediction of fracture of simple materials. In the Griffith theory, a material 
is assumed to have microscopic cracks with high stresses foimd at their tips; 
these cracks cause the material to fail at a much lower level than molecu- 
lar binding forces predict. To accurately predict failure of these materials re- 
quires knowledge of the stress field near the tips. 

Coniposite materials also have cracks, but models are much more involved 
because of material interactions. As before, accurate determination of the 
stress field, especially near high stress regions, is vital for failure prediction. 

For all but the simplest geometries, closed form solutions are almost impos- 
sible to obtain, so numerical methods have become very popular. For ma- 
terial science, by far the most popular methods are the finite element (FE) 
methods. Some of their desirable properties are relative conceptual simplic- 
ity, straightforward (but tedious) implementation, a large available code base 
for solving problems, and a tendency to require only modest computing re- 
sources. Since finite elements are based on polynomials, the solutions to prob- 
lems for which finite elements are used must be expressible as a sum of poly- 
nomials, or the FE approximation will be very poor. Since functioris with 
unbounded derivatives (i.e. stresses near cracks and material interfaces) can- 
not be approximated well with pol5momials, it is common to use special el- 
ements for these functioiis. 

For example, in 2 dimensional problems and some special 3 dimensional cases, 
it has been shown that the stresses near the crack tips are proportional to 
\ly/r, and that the constant of proportionality, Kc, depends only on the ge- 
on\etry of the material. This is enough information to complement the (poly- 
nomial based) FE methods with singular elements (which behave like 1/v^ 
in the appropriate regions), thus reducing the problem to one for which FE 
are well suited, and get good numerical answers. 

For other 3 dimensional crack problems however, asymptotic exparisions have 
shown the stress fields to be proportional to r~°, 0 < a < 1/2, a depending 
on the geometry of the material. Thus, for 3D problems, one does not in gen- 
eral know the behavior of the singularity a priori, and the problem cannot 
be reduced to one which FE can handle well, resulting in low accuracy near 
singularities. Notice the difficulty here: the stress distribution in the vicinity 
of a crack also depends strongly on material geometry, making it impossible 
to separate behavior near cracks from the rest of the material— but this sep- 
aration is how FE methods handle these problems. 

This inherent weakness of most numerical methods — the inability to han- 
dle singularities without "assistance" — is not shared by the group of sine- 



function based methods. Further, sine methods enjoy an exponential con- 
vergence rate, enabling one to get many digits of accuracy with reasonable 
work, if desired. 

For crack and related problems, this means only the location, but not the type, 
of the singularity is needed, and the solution can be accurately computed. 

The weakness of using these methods he in the fact that their use for differ- 
ential and integral equations is recent, so no large code base yet exists; their 
use has been largely in ID problems; and they are not as intuitive as FE or 
finite difference methods, hence overlooked by most people. 

The purpose of this work over the last years has thus been the further devel- 
opment of sine methods for systematic solution of problems in mecharucs 
that possess singularities. The development of the method has been guided 
by a representative problem, described in detail below. 

It should be emphasized that the following problem is only one example 
of an entire class of problems, serving here to illustrate the effectiveness 
and flexibility of the sine methods for that class of problems. 

It should also be noted that this method is readily extended to handle fully 
nonlinear material behavior. 

The details of the method and development to date comprise the bulk of the 
remainder of this report. 

2    Problem and Solution Approach 

The problem here is to find the stress field imiformly to a desired accuracy^ 
in the piece of composite material shown in figure 1. To this end, we solve 
the full isotropic Navier's equations 

v'u + j-:^ v(v. u) = 0 (1) 

with appropriate displacement and stress boundary conditions. 

This problem is broken down as follows. 

1. Using this problem's radial symmetry allows immediate reduction to 
a sequence of 2D problems on domains as shown in figure 2 — section 
2.1. 

2. At points Ai,...,A4, singularities are to be expected. Typically, these 
singularities' behavior depends on approach direction, so each of these 
problems is further divided into triangles, and these triangles are mapped 
to coupled rectangles as shown in figures 3 and 4 — section 2.2. 

^Uniform accuracy of 3 digits in both displacements and stresses is easily achieved. 



Figure 1: The domain for the full 3D problem.   The deborided region is 
treated as a very thin crack. 

Matrix 

ibrous inclusion 

Region of debonding 

3. The sine method is applied to the resulting collection of rectangles, and 
the solution is thus obtained — section 2.3. 

The details of steps (1) and (2) are currently being worked on, and are pro- 
gressing rapidly. We therefore only present an outline of the required steps 
in sections 2.1 and 2.2. The sine metiiod and its application to (3) are found 
in section 2.3. 

2.1   Forming of the 2D sequences 

Although the sine methods can be used directly for 3D problems, incremen- 
tal development is best done for 2D problems first. For the given problem, 
we take advantage of the geometry and use the substitutions 

ne' 
u, ■ {r,e,z)   =   Urfi{r,z) + Y,Ur,n{r,z)cos [ — 

n=l 

n9' 
ue{r,e,z)   =   ^U0,n{r,z)sin[ — 

n=l 

U 
00 f nO'^ 

■.{r,e,z)   =   u,fi{r,z) + ^u^,n{r,z)cos i^ 

(2) 

(3) 

(4) 



z=h 

z=c 

z=-c 

z=-h 

r=0 r=a r = b":^ a 

Figure 2: Reduced 3D problem. Crack and pomts with singularities are in- 
dicated. 

in the polar form of equation 1 to reduce the original equations to the men- 
tioned sequence of 2D problems. The equations governing figure 2 are thus 

-(^-)-KI^-)-%^ + 2^-^ 

d^ 
dzdr Uz,0    = 0 (5) 

.l^"^'0-'(l^"-'')^ + r r r 
d^ a^ 92 

for the non-^ terms of equations 2-4 and 

1 (-3-f4z/) Wfl,„n 

Ur,0     = 0 

2(^-1) l:5::i^r.n| + ^^  ^ ' ;;^/'""--(-i + 2:v) , ^u 

( ^ ~ ^ )   (1^ "»•,»)  _ ^ W^       1  (-l + 2l/) Ur,„ n^    ,   o I^ Wr.n 
2   ■*" 4 

(6) 

2J '   ^"'     ■^-2-^^ + ^^    "•"'/""" "-f2 

/   ^2 \      1 

+ te"-    +2 
te^.n)  J^ 

= 0 (7) 



z=h 

z=c 

z=-c 

z=-h 

i 

rfl dyi ~~—  C?18 

C^16 ^^^  ̂ :^^^ 

^^ ̂ --4A '^15,,^-' ̂ ^"^^ 

rfs 

C^13 

di4 

-^ 
C?12 

rfg 
-^^rfs 

<^11____- 
rfio 

r=0 r=a r = 6 ^ a 

Figure 3: Triangulation of reduced problem. 

2 7-3 2 r3 

(-1 + 21/) (frt^.n)      1 {i:Ur,n)n ^ ^uUe,„ 

Uo ,n        1   (i "^.n) " 

-2(^-1)1 

52 

52 

(8) 

— «,,   -(-l + 2.)U-,«,„   +- -,  

+ 
a^ar "•■•"] "^2 r r 7" 

= 0 (9) 
for the 9 terms - notice the n dependence here. 

So far, we thus have one 2 unknown system, and one 3 imknown system, 
both independent of 6. Of course, each set occurs twice—once for the matrix 
and once for the fiber, and appropriate coupling is done across the botmd- 
aries by matching stresses and displacements above and below the crack, 
and requiring zero stresses at the crack. 

The boimdary conditioiis are trarisformed similarly. 



/-A 

Figure 4: Rectangular solution regions from triangulation of reduced prob- 
lem. Notice that the four domaiiis shown share the boundary that came from 
the point Ai 

2.2   Mapping of the Triangulation 

After the reduction to a sequence, there may be singularities at the points 
Ai, ...,Ai (figure 3). Most likely, these will be moving singularities, e.g. us- 
ing a second polar coordinate system with origin at point Ai, the displace- 
ments may have a form similar to / = r° sin(^), 0 < a < 1/2. In the coor- 
dinate system used in figure 2, / would behave like z{r'^ + z^yl'^'^l'^ near 
Ai, and its partials would have the dominant term rz/{r'^ -f- 2;2J3/2-Q/2 jj^g 
form of singularity is easily changed to a more suitable form via the map- 
pings r = ^, 2 = 77^. Geometrically, this means splitting rectangular do- 
mains into triangular pieces, as shown in figure 3. Algebraically, this map- 
ping turns dominant terms of derivatives into the form 1/^^"**, which no 
longer depends on approach direction, enabling direct solution using sine 
metiiods. 

2.3   Sine Method Description 

It is the purpose of this chapter to give necessary backgrovind for the under- 
standing of sine methods as used for the present work. We begin with some 
known one-dimensional results in section 2.3.1; the extension to two dimen- 
sions is shown in section 2.3.2. The exterision to higher dimensions is similar, 
and will not be shown here. 

Section 2.3.2.5 demonstrates a 2 dimensional, multiple imknown, multiple- 
domain problem of the type occurring after the triangulation done above. 



2.3.1    Sine methods for ID problems 

In this section, we summarize some available results for sine interpolation 
and sine collocation. The main reference for technical details of this section is 
the book Numerical Methods based on Sine and Analytic Functions, Springer, 
1993; most results are proven there. 

2.3.1.1   Interpolation and simple collocation   First, some definitions. 

The sine (or Whittaker Cardinal) function is defined by 

sincfa;) = —!^—- (10) 
TTX 

Define the domain Dd by 

Dd = {we C\Q{w) < d} (11) 

Let a > 0, and let La{Dct) denote the family of functions / with the properties 

• / is analytic in Da; 

• for some c> 0 and all z G Da, 
pOZ 

l/WI^-'tTT^^ (12) 

Now, taking h = I —— )    , we have the interpolation result 

fix) =  E fikh) sine (^^) + EiN) 

E{N) = c^y/Ne-"^^^^ (13) 

for a positive ci depending only on /, d and a. Notice that this result is for 
the real line, and the function must decay at ±oo. 

By first remapping functions approaching a nonzero limit, this can be en- 
hanced to handle non-zero values at ±oo: 

f{x) =   i:  Ck sine f ^^) + cr,+iS^{x) + C_M-I5_OO(X) 4- E{N)   (14) 
k=-M \       "       / 

(15) 
(16) 
(17) 

(18) 

(19) l_,.gax 

7 

h 
1 -r ojv+i<. -'ooK-^J ^ 

Ck = f{kh), k = -N..N 

C-M-l = fi-oo) 
CN+1 = /(oo) 

S-oo{x) = 

C    (^\ — 

1 
1 + gax 



Notice that the summation runs from -M to N; the error bovmd is of the 
same form as above. 

Defining masm = 2N+l, this mearis once n digits of accuracy are obtained, 
one can roughly get 1.4n digits by doubling m. 

To interpolate a function / defined on [a, 6] c R we first make the following 
definitions: 

1. for [a, b] G £), ^ is a conformal map with (j): D ^ Da 

1. iP = (f)-^ 

3. p = e^(^) 

4. T.C') = sine (^i^) 

Let a > 0, and let La (D) denote the family of functions F with the properties 

• F is analytic in Z) 

• for some c> 0 and all z e D, 

1^(^)1 ^ ^(H^ (20) 

/     J \ 1/2 

Now, taking h = I —— j     , we have the interpolation result 

m=  E c,j^^\x) + E{N) 
k=-N 

E{N) = Cy/Ne-"^^^^^ (21) 

for a positive ci depending only on /, d and a. Notice that equation 20 re- 
quires / to vanish at the endpoints of the interval. 

As before, this series can be enhanced to handle nonhomogeneous endpoint 
values with a simple addition: 

N 

Fix)=   E  Ckji''\x) + CN+iSi,{x)+.c.M-iSaix)+E{M,N) (22) 
k=-M 

Ck = {F-Sa- Sb){'(p{kh)), k = -N..N (23) 
CN+1 = F{b) (24) 

c_M-i = F{a) (25) 



and Sa and Sb are cubic splines with value 1 at the left and right endpoints, 
respectively, and zero derivatives at the endpoints. 

As written, the expressions for the Ck are no longer simple function evalua- 
tions. This extra work can be shifted to the exparision of F by defining the 
discrete-orthogonal terms 

Sa(x) = Sa{x) -   Yl  dklkix) (26) 
k=-M 

dk = Sai^ikh)) (27) 

Sb{x) = Sb{x)-   Yl  dklkix) (28) 
k=-M 

4 = Sb{^l^{kh)) (29) 

With these definitions, we have the expaiision 

F{X)=    Y.   Ckl^k\x)+cA{x)-\-CaSa{x) (30) 
k=-N 

with Ck = F{xk), Ca = F{a), Cb = F{b), and Xk = ip{kh) 

2.3.1.2 Extensions for mixed boundary value problems For the solution 
of mixed boundary value problems, a finite norizero approximation of the 
derivative at endpoints is needed. Since the derivatives of the 7^; are un- 
boimded at the endpoint, a nuUifier g is introduced to make the derivatives 
of the series terms also vanish at the endpoints. Then, as before, adding extra 
terms with the right properties gives a useful basis. 

Let Ta{x) and Tb{x) be cubic splines with derivatives of one at the left and 
right endpoint, respectively, and other values and derivatives zero at the end- 
points; then the following series can be used to approximate / on [a, b] when 
/ is specified via a mixed boundary value problem. 

N 

fix)     =       Y   Ck^kix) + CbSbix) + CaSaix) + Cb>fb{x) + (31) 
k=-M 

Ca'fa{x)+E{N,M) (32) 

7.   =    sinc(^^^),(.) (33) 

Xk   =   ^(kh) (34) 

Ck   =   f{xk)lg{xk) (36) 



Cb = fib) (37) 
Ca = f{a) (38) 
Cf = f'ih) (39) 
Ca' = f'{a) (40) 

N 

Sa{x)    =    Sa{x)-    J2   47fc(^) (41) 
k=-M 

N 
Sb{x)   =   Sb{x)-  J2 dklkix) (43) 

k=-M 

fL(a:)   =   Taix)-   Y.  dklk{x) (45) 
k=-M 

fj(i) = nix)- f; 47t(i) (47) 
k=-M 

All following extensions are based upon this series representation, or sub- 
sets of it. 

2.3.2   Sine methods extended for 2D problems 

The straightforward way to extend the sine series to higher dimensions is 
via tensor product. Li this section, two derivations of the series expansion 
are given and the matrix structure which arises for collocation is described. 

hi section 2.3.2.1, we first show the derivation imder the assumption that the 
tinknown can be fully represented by the series (31), and using a tensor prod- 
uct to get the two dimensional extension. 

Next, we treat the splines in (31) as a change of imknown, so as to produce a 
N 

homogeneous equation to be satisfied by the simple sum   ^  CA:7fc(a;), and 
k=-M 

extend this line of thinking to two dimension - section 2.3.2.2. 

Extension of the series to multiple domains is considered in section 2.3.2.3 

Splitting of the two dimensional series into logical imits for collocation and 
matrix setup is the subject of section 2.3.2.4. 
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2.3.2.1 Tensor product derivation Let u{x) be represented by the full sum 
used in equation (31), written as single sum. Thus 

iV+2 

H^) =    Yl    (^klk{x) = Ckjk{x) (49) 
k=-M-2 

where the last equation is written in summation notation (repeat subscripts 
are summed over). Then we have 

U{x,y)    =    [dk^iy)]lk^{x) 
= [dkxk2ifkAy)]'yki{x) 

Ni+2 N2+2 

=       jl Yl     dk^k2lkx{x)lkAy) (50) 
fci=-Mi-2 k2=-M2-2 

This representation is valid on any rectangular region; regions with other 
shapes can easily be mapped onto a rectangle. Also, the "rectangle" can be 
imbounded on one or more sides; only the choice of conformal map (below) 
changes. Thus, half- or fullspace problems can be solved easily. 

Assume for simplicity A^i = N2, Mi = M2 . Define masm = iV-|-M + l. 
Then the series (50) has 

(m + 4)^ = m2-l-87n-|-16 (51) 

terms. Notice that this is the most general form possible, used for problems 
with mixed conditions on all boimdaries. Since not every problem has mixed 
conditions on all boimdaries, the nullifier must be selected in conjvinction 
with the splines for each direction and boundary separately before forming 
the tensor product. 

To this end, it is more natural to think of the splines as a remapping of the 
imknown - the subject of the next section. 

For collocation points, starting from {xk\xk — 'tl^{kh)}k=-M-i..N+i U {xa,Xb} 
for the one-dimensional case, we get the collocation points as a tensor prod- 
uct also: 

{Xkj\Xkj = {ll^{khi),tl){jh2))}k=-Mi-l..Ni+l,j=-M2-l..N2+l U (52) 

{Xaj\Xaj = {Xa,1p{jh2))}j=-M2-1..N2+1 U (53) 

{Xbj\Xbj = (Xb, i}{jh2))}j=-M2-l..N2+l U (54) 

{Xka\Xka = (tPikhi), ya)}k=-Mi-l..Ni+l U (55) 

{xkb\xkb = {'ip{khi),yb)}k=-Mi-i..Ni+i (56) 

Notice that we have {m + if = ni^ + 8m + 16 points, as expected. 

2.3.2.2 Tensor products revisited   Recall the simple series used for La func- 
tions in ID (equation (21)). By using a nullifier, this series has zero value and 
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zero derivative at the bovindaries. By providing splines for the nonhomoge- 
neous boimdary conditions (equation (22)), the problem Lu = f,Bu = g is 
effectively remapped to Lv = f,Bv = 0 and this problem can be solved with 
the sine-only series (21). 

The same approach can be taken in 2 (and higher) dimensions. Starting with 
the simple sine series and forming the tensor product, we obtain the repre- 
sentation 

u{x,y)=   2     E   (^3k-{S{kM)o(f>igi){x){SijM)°(t>292){y)      {57) 
j=-Mi k=-M2 

valid for u G La, u'{a) = u'{b) = 0. It thus remains to remap the problem 
Lu = f,Bu = g to Lv = f,Bv = 0? Taking a hint from the previous section, 
on each boimdary of the rectangle, we can use a series of the form 

r 
"£     [{Sik,h)o(t>igi){Xi)+SaiXi)+Sb{Xi)+faiXi)+fb{xi)]S{x2)    (58) E 

j=-Mi 

for u's value and tangential derivative, and a series of the form 

Ni 

Yl   [{S{k,h)o4>g){x,) + Sa{x,) + Sbixr)]f{x2) (59) 
j=-Mi 

for 1^. The direction of the boimdary is xi, the normal direction xa. This 
gives a total of m^ + 8m + 24 terms per imknown. The causes for this larger 
number are redimdancies at the comers of the domain, in the spline-only 
terms. First, u only has one value at each comer, reducing the total nvimber 
of terms by 4. Then, the x and y partials at each comer are unique also, fur- 
ther reducing the number of terms by 8. Thus, we are left with m? + 8m + 12 
terms per imknown. The four terms missing here but present in (50) are the 
second order mixed derivative terms representing g||- at the comers of the 
domain. 

The results in sections 2.3.2.1 and 2.3.2.2 thus differ at the comers of the do- 
main; numerically, the presence of terms representing the mixed second par- 
tial is redundant and these terms are not used. 

Next, we derive at the collocation points by extending the ID problem in a 
way analogous to the series derivation, rather than by tensor product. First, 
recall that for ID, three point regions can be distinguished. Always present 
are interior collocation points, given by Xk = il^{kh), k = -M..N since these 
correspond to the sine part of the series. When the splines representing the 

^Note: for single unknown problems, an explicit remapping can usually be foimd, so 
that the resulting problem has only the coefficients of (57) as imknowns. However, with 
multiple vmknowns, only the form of the remapping is known, and urJsnown coefficients of 
this form also go into the matrix system. Thus, this approach is somewhat implicit. 
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Figure 5: The point layout for 2D collocatiori, for A^ = M = 1. The circles are 
the boundary points, while the crosses represent the always present part of 
the interior points obtained from the ID tensor product. The points marked 
with triangles are used only when the derivative spline terms corresponding 
to them are present. Notice that the points are not really evenly spaced. 

I-©- -e- -e- -e- -e-| 
C) A A A A A C) 
C) A X X X A C) 
C) A X X X A () 
C) A X X X A () 
C) A A A A A C) 
1—B- -e- -e- 0 0   1 

value of the uriknown at the endpoints of the interval are present {Sx^ etc.), 
the collocation point set is expanded to include the boimdary points. Lastly 
when the splines representing the derivatives at endpoints {Tx^ etc.) are in- 
cluded, the collocation points are further extended with extra points in the 
interior: Xk = ij{kh), k = {-M - 1, A^ + 1} 

Selecting the collocation points in 2D analogously we have a point grid as 
shown in figure 5. 

Notice that here we have no points at the comers, unlike equations (52); this 
is corisistent with the series selection in equations (57) through (59), since 
there we also have 4 terms fewer than equation (50). 

2.3.2.3 Multiple Domain problems in 2D Handling of multiple domain 
problems is straightforward. At the connecting boundaries, the equations 
involve tmknowns from both domains and this simply reflects in the collo- 
cation matrix. 

Stated another way, the continuous properties of the linear problem are re- 
flected in the discrete approximation via the linear system. Therefore, one 
has to only corisider the matrix implications of domain coupling. These con- 
siderations go along with those for general matrix setup, and are the topic 
of section 2.3.2.4. 

2.3.2.4 Splitting of the series and points Recollecting the form of the se- 
ries in section 2.3.1.2 (equation 31), we next expand the pieces of equations 
(57) through (59) and arrange the terms in a form conducive to setting up 
and solving the linear system which arises from collocation of a boundary 
value problem. 

Similarly, the collocation points in figure 5 are dealt with in separate parts. 
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to facilitate multiple domain handling and more elaborate imknown repre- 
sentations^. 

For collocation point ordering, first note that different equations are valid on 
each of the boundaries, and further that not all of the ancillary interior points 
(triangles, figure 5) are always needed, while the interior points (crosses, fig- 
ure 5) are always used. This suggests separately handling the boundaries, 
ancillary interior points, and interior points, giving a total of six point sets 
per domain. Throughout, these will be denoted by t,b,l,r,a,i. 

For the unknown's component splitting, note the following. 

• The Spline-Spline product terms are nonzero in most of the point re- 
gioiis. 

• The interior series has zero value and derivative, or zero value and im- 
bounded derivative (depending on nullifier) on the boundaries, and 
thus never needs to be explicitly evaluated at there. 

• The Series-Spline terms of equation (58) and (59) are nonzero orUy in 
the interior and their boimdary (the boundary on which the spline's 
value or derivative is 1) 

From these observations, it follows that for multiple domaiiis, oiUy the Spline- 
Spline product terms and the Series-Spline terms on the touching boimd- 
aries are affected by the overlap, and the domains imknowris' are otherwise 
independent. Thus, the imknowns are split into top-value, top-partial, left- 
value, ..., right-partial and interior series parts, complemented by the Spline- 
Spline terms, which we will refer to as comer splines (since they provide val- 
ues and derivatives at the comers). 

This is perhaps best illustrated pictorially; figure 6 shows the stmcture of a 
single imknown using formulas, while figure 7 shows the structure as it is 
implemented on the computer. 

The above stmcturing for points and imknowns leads directly to the matrix 
block structure. Since this structure can only be drawn for specific cases, we 
refer here to figure 11 which is part of the example shown later. 

2.3.2.5   Numerical Example-Multiple Unknown/Domain problem   This 
is one of many test problems; it is far from the hardest. It was chosen here be- 
cause it illustrates all important features of the sine method applied to multiple- 
domain, multiple-unknown P.D.E. problems, while being conceptually sim- 
ple. 

^Mixed boimdary conditions on one boundary, with Dirichlet or Neumann conditions 
on another, and coupling between imknowns and domains. 
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Ni N2 

/5(x ,y) = E '^j* 
fc = -M2 

{5r(j, x)STik,y)} BTix,y) = {OS{x)OS{y)} 

BS{x,y) = i OS{x)   J^  CkSTik,y) 
k=-M 

STix) = sinc{{CM(x) - kh)/h)NU{x) 

NU{x) = l/CM'(x) = 
(i — a)(—6 + x) 

(-6 + 0) 

05(x) = 5P(a:) -   ^   dfcSr(a;) 
)fc=-M 

SP(i) = ax" + 61^ + ca; + d 

dk = 
SP{ICM{kh)) 

NU{ICM{{kh))) 

ICS(x) = CAf-i(i) = - 
(e»6 + o) 

(-e* - 1) 

Figure 6: The unknown's representation hierarchy (mathematical expres- 
sions shown). 

The Geometry 
This problem requires the solution of two sets of elliptic partial differential 
equations on two rectangles which have one common botindary. See figure 
8 for the equatioris and their location. In the equations, the following defi- 
nitions are used: 

a^ = iX + 2G)—u + X—w (60) 

a,, = {X + 2G)l^w + x£u 

d d 
''^ = ^8^'''-%'' 

(61) 

(62) 
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Unknown 

InteriorSeries BoundaryTerm 

BoundarySeries 

SeriesTerm 

ConformalMap 

OrthoSpline 

Spline 

Nullifier Dkmacax) 

InverseConfonnalMap 

Figure 7: The unknown's representation hierardiy (program parts shown). 

and gi etc. are determined by substitution of the exact answer, chosen below, 
into the appropriate equation. 

The exact answers 
The exact answers here are chosen as 

ul ={x- rcj'""^ {xb - x) (63) 

wl ={x- Xa)''""-' + 3.0 (64) 

u2 = iy- va) {yt -y) + (xt - x)'^"' (65) 

w2 = iy- ya) (2/6 -y){x- Xa) (xfc - x)'^'"' (66) 

and runs are made for various values of Ipul, Ipwl, rpu2, rpw2. Xa and ya 
denote the left and bottom boundary of the domain, respectively, while Xb 
and pb denote the right and top boundaries. 

Numerical Parameter Values 
For the above equations, the parameter values shown in tables 1 were used. 

Parameters of Unknowns' Sum Representation 
Having the imknowns' representation as detailed in section 2.3.2.4, it remains 
to provide parameter values; the chosen parameters are shown in table 2. 

Collocation Points Used 
In figure 9, the used collocation points' indices are shown graphically. Recall 

16 



u = gg 
W = fflO 

(Txy = fll 
(Tyy = 52 

(Txy = 95 

O'yy = 96 

. d?^" + dV 

, di2 

Domain 1 
4V- 

„(i) - 

^1,5^'" 

<rii = "2 

<^xy = 54 

Domain 2 

« = 511 

W =512 

<^xy = 57 

"•»y = 58 

Figure 8: Domains with equations. 

Table 1: Equation parameters 

domain 1: domain 2: 
Xa = 1.0 
Xb = 2.0 
Va = 1.0 
y6 = 2.0 
G = l.l 
A = 2.0 

Xa = 2.0 
Xb = 3.0 
2/a = 1.0 
y6 = 2.0 
G = l.l 
A = 2.0 

that the actual position of a point is given by 

Xj = (t>~\jhi), Vk = (}>~^{kh2) 

and interior points are "bunched up" near the boimdaries. 

The block matrix 
The above formulas are used to set up a matrbc corresponding to the origi- 
nal linear PDEs; its structure is shown with fixed block sizes (to keep names 
legible) in figure 10, and in proportion in figure 11 

Some numerical comparisons 
There are many graphs for even this single problem. Some representative 
results are shown in figures 13,12 and 14.These graphs show slices in the y 
direction, displayed to fit on single pages. Results shown use 29 series terms 
in both X and y directioi\s, and were computed on a PC with 32 Megabytes 
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Table 2: Parameters for the sine sum, both domains. 

d = 7r/2.0 
a = 1.0 
Ml = 10 
Ma = 10 
A^i = 10 
iV2=10 

Ml = Ml + M + 1 
M2 = M2 + A^2 + 1 

^^ = vS 
h    —    / Trd 

No 

-Mo 

Domain 1 

00000 
Domain 2 

C) A A A A A C) 
^C) A X X X A C) 

C) A X X X A C) 
^O A X X X A 0 

C) A A A A A C) 
I   00000^ 

1 0 0 0 0 0 1 
0 A A A A A 0 
C) A X X X A C) 
C) A X X X A C) 
C) A X X X A C) 
C) A A A A A C) 
—r\ r\ nk r\ r\ 

-Ml     A^i -Ml     A^i 

Figure 9: All possible collocation points are shown, but only boldface ones 
are used in this example. 

of memory. 

Because the accuracy at most points exceeds 2 digits, most graphs show no 
visible errors; the partial derivative in x shown in figure 13 has roughly a 
10% relative error on the y-slice x = 1.001 near the left boundary of the do- 
main. Not shown is the relative error on the y-slice at a; = 1.003, only aroimd 
1%. Put another way, we can expect less than 1% relative error when within 
3/1000 of the singularity or crack, using sufficiently many terms in the se- 
ries. This is close enough, for example, to curve fit a simplified local model 
of singular behavior near the crack tip, if so desired. 

In conclusion, we thus get very good imiform accuracy, for functions and 
derivatives, with both bounded and imboimded derivatives, making the method 
well suited for crack and related problems. 
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Figure 10: Coupled problem.  Entries have the form (unknown)-<equation)- 
(domain)-pts-{point region)-prt-(unknown part). 
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Figure 11: Coupled problem, to scale, M = A^ = 10. 
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Figure 12: Function value comparison; stars are computed values, solid lines 
are the exact answer. 

Sum/Exact domain: 1 unknown: u   Ml a 14 

0.3 MMHH! 

0.2 

O.li 

U. 

0. 13  

6 

1.001 1.111 1.222 1.333 1.443 1.554 1.665 1.775 1.886 1.997 

y slices at indicated x values, y ranges ftom 1.001 to 1.997 

Figure 13: Comparison of function's partial derivative in x; stars are com- 
puted values, solid lines are the exact ariswer. 

SumyExai :t. domain: 1 unknown: u, x paitial. Ml < 1 4 
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Figure 14: Comparison of function's partial derivative in y; stars are com- 
puted values, solid lines are the exact answer. 
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Xt.   Residual stresses due to curing and thermal stresses due to differences between the 
thermal expansion coefficients of the matrix and fiber may have a major effect on the 
microstresses within a composite material system and must be added to the stresses induced by 
the external mechanical loads. Such microstresses are ofteii sufficient to produce microcracking 
even in the absence of external mechanical loads, example during the cooling process. 

In this report a few selected results are presented for a material system consisting of SIC-6 
cylindrical fibers which are periodically embedded into a plate matrix consisting of beta21 
material. The results are based on a linear elasticmicromechanics model which provides the stress 
profiles due to (i) a uniform load perpendicular to the direction of the fibers and (ii) due to a 
thermal expansion mismatch. 


